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Because silylenes (SpRare highly reactive low-oxidation state
intermediates, they insert readily intebonds to form tetravalent
silanest The most common examples of silylene insertions involve
O—H bonds?=> Si—H bonds3¢ S—H bonds’ C—CI bonds*&-10
and metal-hydrogen bond&' More recent examples include
silylene insertions into activated-GH bonds!?-14 Metal-catalyzed
silylene insertions have not been reportett

In this Communication, we describe metal-catalyzed silylene
insertion reactions into allylic and benzylic<© bonds. Stereo-
chemical studies indicate that it should be possible to prepare
optically active allylic silanes by insertion into optically active
allylic alcohols. Consequently, this transformation may be useful
in stereoselective synthesis because chiral allylic silanes are
synthetically valuablé? but they are challenging to prepdfe?3

The insertion of a silylene into an allylic-€0 bond was first
observed during investigations of silylene transfer to alkenes
containing protected hydroxyl groug&Treatment of allylic ether
1 with 2 equiv of cyclohexene silacyclopropaBend a catalytic
amount of AgQCCEF; yielded a product where two deért-
butylsilylene {-Bu,Si) groups were inserted into the allylic©
bond to form allylic disilane3 (eq 1)?° A screen of metal salts
known to catalyze silylene transfer to alketteshowed that copper-

(1) triflate promoted the insertion of a singldBu,Si moiety to give
allylic silane4 (eq 2). The longer reaction times and lower reactivity
associated with this catalyst suggest that the proposed cepper
silylenoid intermediat® operated in a manner distinct from its silver
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A variety of protected allylic alcohols were subjected to the
reaction conditions to provide silylene insertion products (eq 3,
Table 1). The silylene €0 insertion reaction tolerated 1,2-
disubstituted and trisubstituted alkenes, substitution at the allylic
position of the substrate, and a variety of protecting groups on the
alcohol functionality. Secondary allylic alcohols inserted a single
silylene unit, even with a silver catalyst (Table 1, entry 1).
Geminally disubstituted terminal alkenes underwent insertion
followed by a [2,3]-sila-Wittig rearrangeme#t28 probably because
of significant steric effects at the allylic carbon (entry 4). When
the substrate had no alkene moiety, tH&u,Si fragment inserted
into the G-0O bond of the benzyl protecting group instead (entry
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Table 1. Silylene Insertion into C—O Bonds
Entry Substrate (5) Product (6) Catalyst Yield
t-Bu_t-Bu
1 )Mi)M\e BnO’\Si’ ~-Me  6a  AgO,CCFy 74%
Bno” > “Me e e
OPiv oM Oy
2 (j 6b  (CuOTf),(PhMe) 72%
Me tBu_ t-Bu
3 Sl Me  6c  (CuOTh),(PhMe) 67%
omﬂmo/\/LMe CioHp1O \/\M/e
e By -Bu Me
4 Bno)\% Ndi. I Me 6 (CuOTi,(PhMe) 63%
Me BnO’
1T1EZ
5 /\Q Ph/\/Si\,sLo 6e AgO,CCF3 65%
BnO +Bd t+Bu

5). The reactions of monosubstituted alkenes did not result in
silylene insertion but instead led to formation of silacyclopropane
products®®

Control experiments determined that the formation of allylic
disilane3 did not proceed by two sequential insertions. When the
single t-Bu,Si insertion product was subjected to the reaction
conditions (eq 4), the starting material was recovered unchanged
after 12 h. This experiment suggests that sequential insertion of
two t-Bu,Si units cannot be responsible for the generation of allylic

disilane3.
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A crossover experiment demonstrated that silylene insertion is
intramolecular with respect to the allylic ether. Treatment of a
mixture of benzyl-protected allylic eth&a and p-tolyl-protected
allylic ether7 to the reaction conditions did not provide crossover
products (eq 5° The results of this experiment indicate that little
or no dissociation of the alkoxy group from the unsaturated carbon
framework occurred.

Stereochemical studies provided insight into the mechanism of
silylene insertion. Silylene insertion into a 1:1 mixture of cis and
trans diastereomers of allylic eth@ted to a 1:1 mixture of allylic
silane products (eq 6). The reaction of cis allylic eth&resulted
in the sole formation of a cis-substituted allylic silane (e§'%-ray
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crystallography and analysis of chiral esters demonstrated that the Supporting Information Available:

product was enantiomerically enriched, but it was a mixture of
enantiomeric silane42 and 12.32 The observation of only cis
products indicates that formation of the new-8i bond occurs
exclusively on the same face as the @ bond that is broken. The

loss of enantiomeric purity shows that some, but not complete,

allylic transposition occurred. The retention of facial selectivity,

the evidence of some allylic transposition, and the intramolecularity
of the insertion are all consistent with a [1,2]-Stevens rearrangement

of an oxonium ylide’3-3° These observations, along with the lack

of allylic transposition in several cases (such as entries 1 and 3 of

Table 1), are inconsistent with a [2,3]-sila-Wittig reaction, which
would require retention of enantiopurit§37
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Although the reactivity of the allylic silanes has been thoroughly
investigated; the reactivity of allylic disilanes such as those formed
in eq 1 are not well-document&®3° Our results show that these
disilanes react with electrophiles just as allylic silanes do. Allylic
disilane3 reacted with benzaldehyde dimethyl acefid)(to afford
allylated productl4 (eq 8). The annulation of allylic disilang
and N-chlorosulfonyl isocyanaté provided N-chlorosulfonyl
pB-iminolactonel5 (eq 9).
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In summary, allylic ethers undergo metal-catalyzed silylene
insertion to provide allylic silanes and disilanes. This transformation
occurs on the same face of the allylic alcohol, leading to the
formation of enantiomerically enriched products from optically pure
allylic alcohols. Allylic disilanes exhibit similar reactivity to allylic
silanes, undergoing allylation and annulation reactions.
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